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?

https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html

https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html
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Chapman, P. Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and 
Wirth, R. (2000). CRISP-DM 1.0 Step-by-step Data Mining Guide (p.6). [online]

https://docplayer.net/202628-Crisp-dm-1-0-step-by-step-data-mining-guide.html
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• Portion of Dutch healthcare budget: 38% = 34B!
• Care Intensity Package (ZZP)

• ZZP1: Extramural living with some guidance
• ZZP8: Intramural living under full surveillance 

and 24/7 care
• 18 unstructured in-depth interviews

• 8 (board of) directors experts
• 7 management experts
• 7 experts from stakeholders perspective

(MinVWS, IGZ, Care insurer)
• 56 information needs derived (33Q, 23F) from 18 

unstructured in-depth interviews with 22 experts
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improve 
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Spruit,M., Vroon,R., & Batenburg,R. (2014). Towards healthcare 
business intelligence in long-term care: an explorative case study in the 
Netherlands. Computers in Human Behavior, 30, 698–707. [online]

Example: Understanding Long-term Care

http://www.sciencedirect.com/science/article/pii/S0747563213002768


• Score = ∑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑙𝑙𝐸𝐸𝑙𝑙𝐸𝐸𝑙𝑙
𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇 𝑇𝑇𝐸𝐸𝑚𝑚𝐸𝐸𝑇𝑇𝑚𝑚𝑚𝑚𝐸𝐸𝑚𝑚

𝑁𝑁𝑁𝑁𝑇𝑇𝑁𝑁𝐸𝐸𝐸𝐸 𝑚𝑚𝑜𝑜 𝑇𝑇𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑇𝑇𝐸𝐸𝑖𝑖𝑇𝑇
× 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
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Example: Understanding Long-term Care

# Type Information need Score

1 Q Customer experience 16.6

2 F Staffing with respect to ZZP-mix 14.8

3 F ZZP-mix per business unit 13.6

4 F ZZP-mix prognoses 13.6

5 F Staffing with respect to operations 13.5

6 Q Number of incidents occured 13.5

7 Q Types of incidents occured 13.5

8 Q Causes of occured incidents 13.5

9 F Operations per ZZP 13.0

10 F Production information (planned, 
realized, declared) 13.0
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Example: Understanding Long-term Care
Information needs          Data mining goals
• Number of occured incidents
• Types of occured incidents
• Causes of the occured

incidents
• Patterns in occured incidents

• Identify patterns in 
incidents [1]

• Number of clients at an
increased risk

• Types of risk the clients run

• Identify relationships in risk 
assessment

• Progress of care-related
measures

• Identify patterns in care-
related measures

• Treatment goals (obtained & 
not-obtained)

• Care plan information

• Identify patterns in 
obtained and not-obtained
treatment goals

• Number of clients per demand
for care

• ZZP-mix
• ZZP-mix prognosis

• Identify & predict the ZZP 
mix [2]
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Example: Understanding Long-term Care
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• CRISP-IDM: Cross Industry Standard Process for 
Interactive Data Mining

• “Big data” approach: not hypothesis-driven
CRISP-DM 

for more 
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Menger,V., Spruit,M., Hagoort,K., & Scheepers,F. (2016). Transitioning 
to a data driven mental health practice: collaborative expert sessions 
for knowledge and hypothesis finding. Computational and 
Mathematical Methods in Medicine, Article ID 9089321, 11. [online]

Example: Exploring Mental Healthcare

Topic Theme Priority

What are relations between the different ROM 
scores, and can they predict treatment length?

ROM 1

Do medication prescription and change in 
medication influence the length of admission 
and the likeliness of readmission?

Medication 2

Can aggression incidents in inpatients be 
predicted?

Aggression 3

In what way are patients referred between, for 
example, general practitioners, secondary care 
institutions, and the UMCU?

Patient 
referrals

4

http://dx.doi.org/10.1155/2016/9089321


• Data descr.: EHR, Incident report system, External
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Example: Exploring Mental Healthcare

Data entity Type Structured Records

(1) Diagnosis Categoric Structured 5,800

(2) Treatment plan Categoric, 
textual

Both 6,500

(3) Medication prescriptions Categoric, 
numeric

Structured 22,000

(4) Routine Outcome 
Monitoring

Numeric, 
textual

Both 13,000

(5) Admission information Categoric Structured 5,400

(6) Daily reports Textual Unstructured 150,000

(7) Aggression incident reports Categoric, 
textual

Both 1,200

(8) Census data Numeric Structured 21,000

(9) Geographic data Numeric Structured 5,000



• 26 Weekly interactive data visualization explorations!
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Example: Exploring Mental Healthcare



• Finding: Domain experts indicated that the lack of 
variation does not justify scoring the Kennedy Axis V (a 
ROM on Well-being) on a regular basis.

CRISP-DM 
for more 

collaborative 
and inter-

disciplinary 
EDA?

Translational 
data science

Taxonomic 
studies

How to 
uncover non-
hypothesis 

driven topics 
in mental 

healthcare?de
gr

ee
 o

f f
un

da
m

en
ta

l u
nd

er
st

an
di

ng

degree of practical use consideration

Example: Exploring Mental Healthcare



• Finding: A peak in aggression incidents occurs at day 
five, esp. in adult patients (dark)?
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Example: Exploring Mental Healthcare



• Finding: 24/29 hypotheses are new due to CRISP-IDM!
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Example: Exploring Mental Healthcare

Top-5 hypotheses Theme

There exists a positive relation between season of 
admission and length of admission (longer 
admissions during winter)

Admission

A peak in aggression incidents occurs on the fifth day 
of admission

Aggression

There exists a relation between aggression incidents 
and wearing of medication effects in patients 
diagnosed with ADHD

Aggression, 
medication

There is an absence of a relation between amount of 
green space in patient environment and likelihood of 
developing a disorder

Context factors

There is a negative relation between economic status 
of living environment and length of admission

Admission, 
context factors
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Muizelaar,H., Haas,M., Putten,P. v.d., & Spruit,M. (submitted).

Example: Extracting Lifestyle Characteristics with NLP
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Example text data Smoking Alcohol Drugs

Patient smokes, does not drink 
or use drugs

Current user Non-user Non-user

Patient used to smoke, drinks 1 
beer a day

Former user Current user Unknown

Patient used to smoke, uses 
marihuana daily

Former user Unknown Current user

Model Smoking Alcohol Drugs

String Matching 0.84 0.74 0.68

Machine Learning (SGD) 0.85 0.71 0.60

HAGALBERT 0.66 0.54 0.43

RobBERT-HAGA 0.87 0.71 0.63

belabBERT-HAGA 0.48 0.64 0.57

MedRoBERTa.nl-HAGA 0.93 0.79 0.77

BioBERT (translated) 0.91 0.72 0.52

ClinicalBERT (translated) 0.92 0.80 0.61



Example: Extracting Lifestyle Characteristics with NLP
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• tSNE visualisation of MedRoBERTa.nl-HAGA sentence embeddings
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• Question: “How can we support the knowledge 
discovery process of domain experts in healthcare 
using automated machine learning?”
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Example 1: Automated Machine Learning in Healthcare

Ooms,R., & Spruit,M. (2020). Self-Service Data Science in Healthcare 
with Automated Machine Learning. Applied Sciences, 10(9), Medical 
Artificial Intelligence, 2992. [online]

Bayesian 
Optimisation

ATM 
(Swearingen et al., 

2017)

Auto-WEKA 
(Thornton et al., 2013)

Auto-Sklearn 
(Feurer et al. 2015)

Hyperopt-Sklearn
(Komer et al, 2014)

TPOT 
(Olsen et al., 2016)

AutoNet 2.0 
(Mendoza et al., 2018)

Auto-keras
(Jin et al., 2018)

Layered TPOT 
(Gijsberts et al., 2017)

FLASH
(Zhang et al, 2016)

RECIPE 
(de Sa et al., 2017)

AutoPrognosis 
(Alaa et al., 2018)

ML-plan 
(Mohr et al., 2018)

Auto-Stacker 
(Chen et al., 2018)

PoSH Auto-
sklearn 

(Feurer et al., 2018)

AlphaD3M 
(Drori et al., 2018)

Auto-WEKA 2.0 
(Kolthoff et al., 2017)

Neural networks

AutoNet 1.0
(Mendoza et al., 2016)

Classifiers and/or regressors

Evolutionary 
Algorithm

Recurrent 
Neural Network

AI Planning

Legend: AutoML approach

https://doi.org/10.3390/app10092992


• Data: All medical datasets suited for binary 
classification problems (4) in OpenML-CC18 open-
source benchmark suite (Gijsbers et al., 2019)

• All AutoML methods receive 1 hour in a 10-fold cross-
validation set-up to create the best pipeline on these 
datasets
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Example: Automated Machine Learning in Healthcare

Dataset Data points Missing 
data

Predictive 
features

Class 
variable

Breast 
cancer

699 - 9 458/241

Diabetes 768 - 8 500/268

Indian Liver 
Patients

583 - 10 416/167

Sick 3772 6064 29 3541/231



• Decision tree and constant predictor as baseline
• Hyperopt performs worst; TPOT and Auto-Sklearn best

<1-hour budget>
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Example: Automated Machine Learning in Healthcare



• When benchmarking with 4 hour budget, again, TPOT 
and Auto-Sklearn perform best

<4-hour budget>
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Example: Automated Machine Learning in Healthcare



• Evaluation: Webapp vs Notebook deployment

• Artefact A: GUI /Flask app
• Artefact B: Interactive code/
   Jupyter notebook

• Findings: “best of both”…
• A preferred for ‘basic’ ops
• B preferred for modeling
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Example: Automated Machine Learning in Healthcare



Basic                 
data science

Translational 
data science

Taxonomic 
studies

Applied           
data science

de
gr

ee
 o

f f
un

da
m

en
ta

l u
nd

er
st

an
di

ng

degree of practical use consideration

PS: PyCaret for Self-Service Data Science?



Example 2: Synthesising Virtual Patients & Population

A CGAN vs 
ABM 

benchmark 
for synthetic 
EHR data?
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ABM approach (Ammar Faiq) CGAN approach (Jim Achterberg)

• Synthea-based dataset
An ELAN ‘digital twin’ is already 
being used in the PHM 
Fundamentals master course to let 
students analyse COVID outbreaks 
in The Hague region (see below)

• Joint research with Statistics 
Netherlands (CBS) & Syntho

• Workshop ‘Guidance Ethics’: 
many stakeholders, 50+ effects

• Thesis
Evaluation Framework for 
synthetic EHR data (supporting 
heterogeneous types, time series, 
unpredictable quality)
- tSNE extension
- two-sample GoF test
- evaluation metric for privacy 

risk through AiAs

• Horizon Europe, NWO OSF

https://thesis.eur.nl/pub/65772
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• Effects and mitigation of gender fairness bias on a 
model trained to predict the future administration of 
benzodiazepines to psychiatric patients (AI Fairness 360)

How much 
performance 
is sacrificed 

when 
applying bias 
mitigation?

Translational 
data science
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Example: Discovering Bias in Mental Health

Mosteiro,P., Kuiper,J., Masthoff,J., Scheepers,F., & Spruit,M. (2022). Bias 
Discovery in Machine Learning Models for Mental Health. Information, 
13(5), Advances in Explainable Artificial Intelligence, 237. [online]

“reweighing”

“prejudice 
remover”

Workflow of data, machine 
learning models, and bias 
mitigation techniques used 
in this research.

https://doi.org/10.3390/info13050237
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Example: Discovering Bias in Mental Health

Model Performance (comp. to baseline)

Classifier Mitigation 
strategy

∆ Balanced 
accuracy ∆ F1

Logistic 
regression

Predudice 
remover −0.040 ± 0.013 −0.041 ± 0.025

Logistic 
regression Re-weighing −0.003 ± 0.013 −0.005 ± 0.013

Random forest Re-weighing 0.003 ± 0.002 0.005 ± 0.001

Model Fairness metric (compared to baseline)

Classifier Mitigation 
strategy

∆ 
Disparate 

impact

∆ Average 
odds 

difference

∆ Statistical 
parity 

difference

∆ Equal 
opportunity 
difference

Logistic 
regression

Predudice 
remover

0.092 ± 
0.036

0.038 ± 
0.021

0.050 ± 
0.019

0.018 ± 
0.042

Logistic 
regression

Re-
weighing

0.075 ± 
0.021

0.043 ± 
0.017

0.043 ± 
0.014

0.042 ± 
0.034

Random 
forest

Re-
weighing

0.034 ± 
0.013

0.014 ± 
0.006

0.013 ± 
0.006

0.014 ± 
0.011
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Lisanne Wallaard     GitHub    Thesis    Demo

Feasibility of 
ML model 

deployment 
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highly secure 
sandbox env
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Example: Deploying Prediction Models for CDSS

https://github.com/LisanneWallaard/Thesis/tree/main
https://theses.liacs.nl/2653
https://kamilpytlak-heart-condition-checker-app-2r42q4.streamlit.app/


• A 10-years running research programme with big funding 
(OPERAM, OPTICA, STRIMP)

• Basically lost the fight with UU biz developers: no product

How to 
design and 

deploy a 
CDSS 

knowledge 
system?

Translational 
data science

Taxonomic 
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Does 
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Example: STRIP Assistant for Medication Reviews

Jungo,K., ..., Spruit,M., …, Rodondi,N., Streit,S. (2023). Optimising 
prescribing in older adults with multimorbidity and polypharmacy in 
primary care (OPTICA): cluster randomised clinical trial. BMJ, 381. [online]

https://doi.org/10.1136/bmj-2022-074054
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Example: Understanding Long-term Care

Identify the 
patterns in 
incidents 

Identify & 
predict the 

ZZP-mix

Relationship 
between 

care-related 
measures 

and incidents

Identify care 
within & 

outside ZZP 
indication 
(planned, 
realized)
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Spruit, Marco. (2022). Translational Data Science in 
Population Health (p. 20). Inaugural lecture. Leiden 
University. https://doi.org/10.5281/zenodo.7665858

https://doi.org/10.5281/zenodo.7665858
https://doi.org/10.5281/zenodo.7665858
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